Reciprocal Functions

chapter 8 Notes.

From the previous chapter on rational functions we saw that non-permissible values provide the location of asymptotes on the corresponding graph.

e.g. The function $\frac{1}{x-2}$ has the non-permissible value x=2, the graph of $y=\frac{1}{x-2}$ therefore has an asymptote at x=2.

Notice there is also a horizontal asymptote at y=0. This is because $\frac{1}{x-2} \neq 0$ for any value of x.

As x 300

As x >-00

As $x \rightarrow 2^+$

As x > 2

1 3-00

If y = f(x) then the reciprocal function is $y = \frac{1}{f(x)}$.

Graphing Reciprocal Functions

Graph y = x and its reciprocal function using a table of values:

y = x		
x	у	
-2	-2	
-1	~(
0	0	
1)	
2	2	

<i>y</i> =	$=\frac{1}{x}$	
x	y	
-2	-1/2	
-1	-1	
0	9.W	Vertical Asym.
1	1	
2	1/2	

1 +0 50 HA at y=0

What points do they have in common? (-), -(), .

If
$$f(x) = 1$$
 then $\frac{1}{f(x)} = \frac{1}{1} = 1$ and if $f(x) = -1$ then $\frac{1}{f(x)} = \frac{1}{-1} = -1$.

Thus the points on the graph which intersect with the lines y=1 and y=-1 will also be points on the graph of the reciprocal function.

What else do you notice?

The x-intercept(s) of the graph of y = f(x) give the location of the asymptotes of the graph of the reciprocal function $y = \frac{1}{f(x)}$.

There is a horizontal asymptote at y=0 on the graph of the reciprocal function as $\frac{1}{f(x)}\neq 0$.

Example: Graph $y = x^2 - 4$ and its reciprocal function.

Example: Graph $y = -2x^2 - 1$ and its reciprocal.

Workbook 8.3 - 8.5 exercises only.

Absolute Value Functions and Equations

Example: Graph y = -2x + 2 and y = |-2x + 2| using a table of values.

What do you notice?

The graph of y = |f(x)| is the graph of y = f(x) with any part below the x-axis (y < 0) reflected in the x-axis.

We can express absolute value functions using piecewise notation. We break the function y = |f(x)| into two parts, the part for which $f(x) \ge 0$ and the part for which f(x) < 0:

For y = |-2x + 2|, y = -2x + 2 when $-2x + 2 \ge 0$ and y = -(-2x + 2) when -2x + 2 < 0.

$$-2x + 2 \ge 0$$

$$-2x \ge -2$$

$$x \le 1$$

$$-2x + 2 < 0$$

$$-2x < -2$$

$$x > 1$$

Thus y = |-2x + 2| can be written as the piecewise function:

$$y = \begin{cases} -2x + 2 & if \quad x \le 1 \\ 2x - 2 & if \quad x > 1 \end{cases}$$

There can be at most two pieces if f(x) is a linear function. How many pieces can there be if f(x) is a quadratic function?

Example: Graph $y = |x^2 - 5x + 4|$ and write in piecewise notation.

Start by graphing $y = x^2 - 5x + 4$, then reflect the piece for which y < 0 in the x-axis.

Piecewise notation:

$$y = \begin{cases} x^2 - 5x + 4 & \text{if} \\ -x^2 + 5x - 4 & \text{if} \end{cases}$$

Solving Absolute Value Equations

To solve |f(x)| = g(x) graphically, graph y = |f(x)| and y = g(x) on the same grid and find the points of intersection.

To solve algebraically consider the absolute value function piecewise.

Linear Absolute Value Equations

Example: Solve |4x - 7| = 2 + x.

$$4x-7=2+x$$
 if $4x-7\geq 0$ and $-(4x-7)=2+x$ if $4x-7<0$

$$3x=9 \text{ if } 4x > 7$$

$$x=3 \text{ if } x > 7$$

$$x=3 \text{ if } x > 7$$

$$x=1$$

$$3 > 7 < 7 < 4$$

$$x=3$$

Quadratic Absolute Value Equations

Example: Solve $|x^2 - 3x - 11| - 3 = 4$.

Simplify first $|x^2 - 3x - 11| = 7$.

Now $x^2 - 3x - 11 = 7$ if $x^2 - 3x - 11 \ge 0$ and $-(x^2 - 3x - 11) = 7$ if $x^2 - 3x - 11 < 0$

 $x^{2}-3x-11=7$ $x^{2}-3x-18=0$ (x-6)(x+3)=0 x=-3,6

 $-(x^{2}-3x-11)=7$ $x^{2}-3x-4=0$ (x-4)xx+1=0 x=-1,4

IF $x^2-3x-117,0$ Critical values: $x^2-3x-11=0$ $x=3\pm\sqrt{9+44}$ $=3\pm\sqrt{53}$

3-453

Workbook 8.1 and 8.2

 $3-\sqrt{53}$ < -1, 4 < $3+\sqrt{53}$

SO (IF) X (3-1/5) or X ? 3+1/5)

So x=-1, 4 are solutions

x=-3,-1,4,6 are all solutions

-35-2.1 and 67,5.1

So x = -3,6 are sols.

* show on Desmos

Recap:

- 1. If (a, b) is a point on y = f(x) then $\left(a, \frac{1}{b}\right)$ is a point on the reciprocal function $y = \frac{1}{f(x)}$.
- 2. The points at which y = f(x) intersects with the lines y = 1 and y = -1 are also points on the reciprocal function $y = \frac{1}{f(x)}$.
- 3. The x-intercepts of y = f(x) give the location of the asymptotes of the graph of $y = \frac{1}{f(x)}$.
- 4. $y = \frac{1}{f(x)}$ will always have a horizontal asymptote at y = 0.
- 5. Check your graph. As $x \to \pm \infty$ what happens to $\frac{1}{f(x)}$? What is the y-intercept?
- 6. To graph the absolute value of a function, reflect any part for which y < 0 in the x-axis.
- 7. When solving absolute value equations you must consider both pieces of the absolute value function AND both restrictions, roots may be extraneous.

Notes to Self:

Challenge:

- 1. How do the graphs of $\frac{1}{x+1}$ and $\frac{x-1}{(x-1)(x+1)}$ differ?
- 2. What would the graph of y = |x| 4 look like?