PRECALCULUS MATHEMATICS 12

TABLE OF CONTENTS

COMBINING FUNCTIONS

Review of basic functions;

Addition, subtraction, multiplication and division of functions; composition of functions.

• 48 PROBLEMS

TRANSFORMATIONS

Transformations of graphs and equations (vertical and horizontal translations, stretches, and reflections) of parent functions and relations; inverses.

• 118 PROBLEMS

POLYNOMIALS

Factoring (Factor Theorem and the Remainder Theorem), the Rational Zero Theorem and polynomial division;

Graphing and polynomial characteristics;

Solving equations and inequalities algebraically and graphically.

• 183 PROBLEMS

RADICAL & RATIONAL FUNCTIONS

Characteristics and behaviour of graphs, including asymptotes (horizontal, vertical and oblique), intercepts and point discontinuities.

• 51 PROBLEMS

LOGARITHMIC and EXPONENTIAL FUNCTIONS

Graphing and characteristics of exponential and logarithmic functions including transformations;

Applying laws of logarithms;

Solving equations with the same and with different bases, including base e; Applications.

- 235 PROBLEMS
- LAWS OF LOGARITHMS WORKSHEET
- REVIEW PACKAGE

TRIGONOMETRY I

Examining angles in standard position in both radians and degrees;

Reference and coterminal angles; arc length;

Reciprocal trigonometric functions;

Solving first-degree equations;

Graphing and characteristics of primary trigonometric functions, including transformations.

- 165 PROBLEMS
- REVIEW PACKAGE

TRIGONOMETRY II (EQUATIONS and IDENTITIES)

Trigonometric identities (Pythagorean, quotient, double angle, reciprocal, and sum and difference identities) and two-column proofs;

Solving second-degree equations (over restricted domains and all real numbers).

- 135 PROBLEMS
- TRIGONOMETRIC IDENTITIES PACKAGE
- REVIEW OF SUM and DIFFERENCE & DOUBLE ANGLE IDENTITIES WORKSHEET

CONIC SECTIONS

The parabola, circle, ellipse and hyperbola: equations and graphs; General to Standard Form;

Transformations and applications.

• 194 PROBLEMS

GEOMETRIC SEQUENCES and SERIES

Common ratio, first term, general term;

Infinite geometric series and summation notation.

• 121 PROBLEMS

TRANSFORMATIONS

SPECS 2001

1. If the graph of y = f(x) is translated 5 units to the left, determine the resulting equation.

A.
$$y - 5 = f(x)$$

A.
$$y-5=f(x)$$
 B. $y+5=f(x)$ C. $y=f(x-5)$

C.
$$y = f(x - 5)$$

D.
$$y = f(x + 5)$$

- How is the graph $5y = \sqrt{x}$ related to the graph $y = \sqrt{x}$? 2.
 - A. $y = \sqrt{x}$ has been vertically translated 5 units up
 - B. $y = \sqrt{x}$ has been expanded vertically by a factor of 5
 - C. $v = \sqrt{x}$ has been compressed vertically by a factor of 5
 - D. $y = \sqrt{x}$ has been compressed horizontally by a factor of 5
- Simplify: $f^{-1}(f(x))$ 3.

B.
$$-x$$

C.
$$\frac{1}{x}$$

D.
$$-\frac{1}{x}$$

Given the function $f(x) = (x-1)^3 + 2$, determine $f^{-1}(x)$, the inverse function. 4.

A.
$$f^{-1}(x) = \sqrt{x+2} + 1$$

B.
$$f^{-1}(x) = \sqrt[2]{x-2} + 1$$

C.
$$f^{-1}(x) = \sqrt{x+2} - 1$$

D.
$$f^{-1}(x) = \sqrt[2]{x-2} - 1$$

- The function y = f(x) is transformed to y = f(2x + 4). Identify the horizontal expansion or 5. compression factor, then the translation to the graph of the function.
 - A. horizontal expansion by a factor of 2, then a translation of 4 units left.
 - B. horizontal compression by a factor of 2, then a translation of 4 units left.
 - C. horizontal expansion by a factor of 2, then a translation of 2 units left.
 - D. horizontal compression by a factor of 2, then a translation of 2 units left.

The graph of $y = \sqrt{9 - x^2}$ is shown. 6.

Which of the following graphs represents $2y = \sqrt{9 - x^2}$?

A.

B.

C.

SAMPLE 2001

- If (6,-5) is a point on the graph of y = f(x), what must be a point on the graph of 7. y = -f(2(x+2)) - 3?
 - A. (-1, 2) B. (1, -2) C. (1, 2) D. (10, 2)

- Given the function $y_1 = f(x)$, describe how the graph of the new function, $y_2 = 4f(x-2)$, is 8. related to the graph of y_1 .
 - A. The graph of y_1 has been vertically compressed by a factor of 4 then translated 2 units right to form the graph of y_2 .
 - B. The graph of y_1 has been vertically expanded by a factor of 4 then translated 2 units right to form the graph of v_2 .
 - C. The graph of y_1 has been vertically compressed by a factor of 4 then translated 2 units left to form the graph of y_2
 - D. The graph of y_1 has been vertically expanded by a factor of 4 then translated 2 units left to form the graph of y_2 .

9. The graph of the function y = f(x) is shown below.

Sketch the graphs of:

A.
$$y = f(-x)$$

A.
$$y = f(-x)$$
 B. $y = f(x - 3)$ C. $y = 2f(x)$ D. $x = f(y)$

C.
$$v = 2f(x)$$

D.
$$x = f(y)$$

A.

B.

C.

D.

JAN 2002

10. Which equation represents the graph of $y = \sqrt{x}$ after it is translated 4 units to the right?

A.
$$y = \sqrt{x} - 4$$

B.
$$y = \sqrt{x - 4}$$

B.
$$y = \sqrt{x-4}$$
 C. $y = \sqrt{x+4}$

D.
$$y = \sqrt{x} + 4$$

11. If y = 5x - 1, determine the equation of $f^{-1}(x)$, the inverse of f(x).

A.
$$f^{-1}(x) = \frac{1}{5x - 1}$$
 B. $f^{-1}(x) = \frac{1}{5}x - 1$ C. $f^{-1}(x) = \frac{x + 1}{5}$ D. $f^{-1}(x) = \frac{x - 1}{5}$

B.
$$f^{-1}(x) = \frac{1}{5}x - 1$$

C.
$$f^{-1}(x) = \frac{x+1}{5}$$

D.
$$f^{-1}(x) = \frac{x-1}{5}$$

12. The graph of y = f(x) is shown.

Which of the following graphs represents y = -2f(x)?

13. The graph of y = f(x) is shown.

On the grids provided, sketch the graphs of: A. y = f(x+2) - 3 B. y = f(x+2) - 3

A.
$$v = f(x+2) - 3$$

B.
$$y = f(2x)$$

C.
$$y = |f(2x)|$$

A.

B.

C.

14. Which equation represents the graph of $y = x^3 + x^2$ after it is reflected in the *y*-axis?

A.
$$y = -x^3 + x^2$$

B.
$$y = -x^3 - x^2$$

A.
$$y = -x^3 + x^2$$
 B. $y = -x^3 - x^2$ C. $y = \frac{1}{x^3 + x^2}$ D. $y = y^3 + y^2$

D.
$$y = y^3 + y^2$$

APR 2002

15. Given the function y = f(x), which of the following represents its reflection in the y-axis?

A.
$$y = f(-x)$$
 B. $y = -f(x)$ C. $y = f(y)$

B.
$$y = -f(x)$$

C.
$$y = f(y)$$

D.
$$y = \frac{1}{f(x)}$$

- 16. How is the graph of $y = \frac{1}{7}f(x)$ related to the graph of y = f(x)?
 - A. y = f(x) has been compressed vertically by a factor of 7
 - B. y = f(x) has been compressed horizontally by a factor of 7
 - C. y = f(x) has been expanded vertically by a factor of 7
 - D. y = f(x) has been expanded horizontally by a factor of 7
- 17. Given $f(x) = x^3 27$, determine $f^{-1}(x)$, the inverse of f(x).

A.
$$f^{-1}(x) = \sqrt{x+27}$$
 B. $f^{-1}(x) = \sqrt{x-27}$ C. $f^{-1}(x) = \sqrt{x+3}$ D. $f^{-1}(x) = x^3 + 27$

B.
$$f^{-1}(x) = \sqrt{x-27}$$

C.
$$f^{-1}(x) = \sqrt{x} + 3$$

D.
$$f^{-1}(x) = x^3 + 27$$

18. If (4, -3) is a point on the graph of y = f(x), what must be a point on the graph of y = f(2x + 10)?

A.
$$(-8, -3)$$
 B. $(-3, -3)$ C. $(3, -3)$

B.
$$(-3, -3)$$

C.
$$(3, -3)$$

D.
$$(18, -3)$$

19. The graph of the function y = f(x) is shown below.

- Sketch the graphs of: A. y = 3f(x 2)
- B. $y = -f\left(\frac{x}{2}\right)$

B.

JUNE 2002

20. Given the graph of y = f(x), select the graph of $y = \frac{1}{2}f(x)$.

A.

В.

C.

D.

21. Two functions are graphed below, y = f(x) and y = f(a(x - b)). Determine the values of a and b

- A. a = -1, b = -2 B. a = -1, b = 2 C. a = 1, b = -2 D. a = 1, b = 2

22. The graph of y = f(x) is shown.

On the grids provided, sketch the graphs of: A. y = 2f(x+3) - 1

A.

B.

AUG 2002

- 23. How is the graph of $y = \sqrt{x-3} + 1$ related to the graph of $y = \sqrt{x}$?
 - A. $y = \sqrt{x}$ has been translated 3 units right and 1 unit up.
 - B. $y = \sqrt{x}$ has been translated 3 units right and 1 unit down.
 - C. $y = \sqrt{x}$ has been translated 3 units left and 1 unit up.
 - D. $v = \sqrt{x}$ has been translated 3 units left and 1 unit down.
- 24. Given f(x) = 3x + 2, determine $f^{-1}(x)$, the inverse of f(x).
- A. $f^{-1}(x) = \frac{x}{3} 2$ B. $f^{-1}(x) = \frac{x-2}{3}$ C. $f^{-1}(x) = \frac{1}{3x+2}$ D. $f^{-1}(x) = 2 \frac{x}{3}$
- 25. Which equation represents a reflection of the graph of $5 x = 2y^2 + y$ in the *y*-axis?

- A. $5 + x = 2y^2 + y$ B. $5 x = 2y^2 y$ C. $5 + y = 2x^2 + x$ D. $-5 x = 2y^2 + y$
- 26. In the point (-3, -6) is on the graph of y = f(x), determine a point on the graph of y = 3|f(x)| + 1.
 - A. (3, 3)

- B. (3, 19) C. (-3, 3) D. (-3, 19)
- 27. Which equation represents the graph of y = f(x) after it is compressed horizontally by a factor of 2 and then translated 4 units right?

- A. y = f(2x 8) B. y = f(2x 4) C. $y = f(\frac{x 4}{2})$ D. $y = f(\frac{x}{2} 4)$

JAN 2003

- 28. How is the graph of y = f(x) + 3 related to the graph of y = f(x)?
 - A. y = f(x) has been translated 3 units up.
 - B. y = f(x) has been translated 3 units down.
 - C. y = f(x) has been translated 3 units to the left.
 - D. y = f(x) has been translated 3 units to the right.

29. Which equation represents the graph of y = f(x) after it is reflected in the line y = x?

A.
$$x = f(y)$$

A.
$$x = f(y)$$
 B. $y = f(-x)$ C. $y = -f(x)$

$$C. \quad y = -f(x)$$

$$D. \quad y = \frac{1}{f(x)}$$

30. If the graph of the function $y = \sqrt{x}$ is horizontally expanded by a factor of 3 and the translated 2 units to the right, determine the equation of this new function.

A.
$$y = \sqrt{3(x-2)}$$

A.
$$y = \sqrt{3(x-2)}$$
 B. $y = \sqrt{\frac{1}{3}(x-2)}$ C. $y = \sqrt{3x-2}$ D. $y = \sqrt{\frac{1}{3}x-2}$

C.
$$y = \sqrt{3x - 2}$$

D.
$$y = \sqrt{\frac{1}{3}x - 2}$$

31. If (8, -6) is a point on the graph of y = f(x), what must be a point on the graph of y = -f(2x) + 3?

A.
$$(-16, -3)$$
 B. $(-4, -3)$ C. $(4, 9)$

B.
$$(-4, -3)$$

- D. (16, 9)
- 32. The graph of y = f(x) is shown below on the left. Which equation represents the graph shown on the right?

A.
$$y = f(-(x+8))$$
 B. $y = f(-(x-8))$ C. $y = -f(x-8)$ D. $y = -f(x+8)$

B.
$$y = f(-(x-8))$$

C.
$$y = -f(x - 8)$$

D.
$$y = -f(x+8)$$

33. The graph of y = f(x) is shown.

Sketch the graphs of

A.
$$y = 2f(x+3)$$

B.
$$y = \frac{1}{f(x)}$$

A.

B.

JUNE 2003

34. The function y = f(x) is graphed to the left below. Determine the equation of the function shown to the right.

A.
$$y = f(2(x-1))$$

A.
$$y = f(2(x-1))$$
 B. $y = f(\frac{1}{2}(x-1))$ C. $y = 2f(x-1)$ D. $y = \frac{1}{2}(x-1)$

C.
$$y = 2f(x - 1)$$

D.
$$y = \frac{1}{2}(x - 1)$$

- 35. If the point (a, b) is on the graph of y = f(x), which point must be on the graph of $y = \frac{1}{f(x-2)}$? (a = 0, b = 0)
 - A. $\left(a-2, \frac{1}{b}\right)$ B. $\left(a+2, \frac{1}{b}\right)$ C. $\left(\frac{1}{a}, b\right)$ D. (a+2, b)

36. The graph of y = f(x) is shown below.

Sketch the graphs of

A.
$$y = 2f(x) - 3$$

B.
$$y = f^{-1}(x)$$

JAN 2004

- 37. Which equation represents the graph of y = g(x) after it is translated 5 units up?

- A. y = g(x) + 5 B. y = g(x) 5 C. y = g(x + 5) D. y = g(x 5)

38. The graph of y = f(x) is shown below.

Which graph represents x = f(y)?

A.

В.

C.

D.

- 39. If the point (4,6) is on the graph of y = f(x), what point must be on the graph of $y = 3\left(\frac{1}{f(x)}\right)$?
 - A. $\left(12, \frac{1}{6}\right)$ B. $\left(4, \frac{1}{18}\right)$ C. $\left(4, \frac{1}{2}\right)$
- D. (2, 18)

40. The graph of y = f(x) is shown below. Sketch the graphs of:

A.
$$y = -2f(x+3)$$

B.
$$y = \left| f\left(\frac{x}{2}\right) \right|$$

JUNE 2004

41. Which equation represents the graph of $y = \tan x$ after it has been translated 4 units up and 7 units left?

- A. $y = \tan(x+7) + 4$ B. $y = \tan(x+7) 4$ C. $y = \tan(x-7) + 4$ D. $y = \tan(x-7) 4$
- 42. The point (9, -12) is on the graph of a function. What will the coordinates of this point be after all of the following transformations are performed on the function, in the order given?
 - -horizontal expansion by a factor of 3
 - -reflection in the x-axis
 - -vertical translation of 5 downward
 - -reflection in the line y = x

A. (-27,7)

- B. (-17, -27) C. (7,3)
- D. (7, 27)

43. The graph of y = f(x) is shown below.

On the grids provided, sketch the graphs of:

A.
$$y = f(-x) - 3$$

B.
$$y = \frac{1}{f(x)}$$

A.

B.

AUG 2005

44. If the function $y = 3^x$ is expanded vertically by a factor of 9 to produce a new function, which of the following is an equation of the new function?

A.
$$y = 3^{2x}$$

B.
$$y = 3^{3x}$$

C.
$$y = 3^{x+2}$$

D.
$$y = 3^{x-2}$$

45. Which equation represents the graph of y = g(x) after it is translated 3 units to the right?

A.
$$y = g(x) + 3$$

$$B. \quad y = g(x) - 3$$

C.
$$y = g(x + 3)$$

A.
$$y = g(x) + 3$$
 B. $y = g(x) - 3$ C. $y = g(x + 3)$ D. $y = g(x - 3)$

Page 17 TRANSFORMATIONS

46. The graph of y = f(x) is shown below. Which graph represents y = |f(x)| + 2?

47. For which of the following functions is f(-x) = f(x)?

B.

C.

D.

- 48. If the point (6,10) is on the graph of y = f(x), which point must be on the graph of $y = \frac{1}{2f(x)}$?
 - A. $\left(3, \frac{1}{10}\right)$ B. $\left(6, \frac{1}{5}\right)$ C. $\left(6, \frac{1}{10}\right)$ D. $\left(6, \frac{1}{20}\right)$

- 49. Given the graph of the function y = f(x) on the left, determine the equation of the function on the right.

- A. $y = f\left(\frac{x}{2} 3\right)$ B. $y = f\left(\frac{x 3}{2}\right)$ C. y = f(2x 3) D. y = f(2x 6)

50. The graph of y = f(x) is shown below. On the grids provided, sketch the graphs of

A.
$$y = 3f(x) + 1$$

B.
$$y = \frac{1}{f(x)}$$

51. Which equation represents the graph of $\frac{(x-2)^2}{4} + \frac{(y-3)^2}{9} = 1$ after it is translated 5 units to the right and 1 unit up?

A.
$$\frac{(x-7)^2}{4} + \frac{(y-4)^2}{9} = 1$$

B.
$$\frac{(x-7)^2}{4} + \frac{(y-2)^2}{9} = 1$$

C.
$$\frac{(x+3)^2}{4} + \frac{(y-4)^2}{9} = 1$$

D.
$$\frac{(x+3)^2}{4} + \frac{(y-2)^2}{9} = 1$$

52. Which equation represents the graph of $y = 2^x$ after it is reflected in the *x*-axis?

A.
$$v = 2^{-x}$$

B.
$$y = -2^x$$

C.
$$y = \log_2 x$$

C.
$$y = \log_2 x$$
 D. $y = -\log_2 x$

AUG 2006

- 53. How is the graph of y = f(4x) related to the graph of y = f(x)?
 - A. y = f(x) has been compressed vertically by a factor of 4.
 - B. y = f(x) has been compressed horizontally by a factor of 4.
 - C. y = f(x) has been expanded vertically by a factor of 4.
 - D. y = f(x) has been expanded horizontally by a factor of 4.
- 54. If the maximum value of the function y = f(x) is 6, determine the maximum value of $y = \frac{1}{3}f\left(\frac{1}{2}x\right)$.
 - A. 2

B. 3

C. 12

- D. 18
- 55. If the point (-2, -5) is on the graph of y = f(x), which point must be on the graph of y = |f(x-1)| - 3?
 - A. (-3, 2)
- B. (-1,2) C. (1,-8)
- D. (3, -8)

56. The graph of y = f(x) is shown below.

On the grids provided, sketch the graphs of:

A.
$$y = 2|f(x)| + 1$$

B.
$$y = \frac{1}{f(x)}$$

-5

SAMPLE 2008

57. Which equation represents the graph of y = f(x) after it is vertically compressed by a factor of 2 and then translated 2 units to the left?

A.
$$\frac{y}{2} = f(x+2)$$
 B. $\frac{y}{2} = f(x-2)$ C. $2y = f(x+2)$ D. $2y = f(x-2)$

$$B. \quad \frac{y}{2} = f(x-2)$$

C.
$$2y = f(x+2)$$

D.
$$2y = f(x - 2)$$

58. Determine the inverse of the function $f(x) = \frac{4x+1}{3x}$.

A.
$$f^{-1}(x) = \frac{1}{3X - 4}$$

B.
$$f^{-1}(x) = \frac{-1}{3x - 4}$$

A.
$$f^{-1}(x) = \frac{1}{3X - 4}$$
 B. $f^{-1}(x) = \frac{-1}{3x - 4}$ C. $f^{-1}(x) = \frac{3x}{4x + 1}$ D. $f^{-1}(x) = \frac{-3x}{4x + 1}$

D.
$$f^{-1}(x) = \frac{-3x}{4x+1}$$

- 59. The *y*-intercept of the function y = f(x) is 5. Determine the *y*-intercept of y = -f(x) + 3
 - **A.** −2

B. -8

C. 8

- D. 2
- 60. The graph of function y = f(x) is shown. Which of the following is the graph of y = f(2x) 3?

A.

B.

C.

D.

- 61. The point (10, 6) is on the graph of y = f(x), what point must be on the graph of y = f(-2x - 4)?
- A. (-7,6) B. (-9,6) C. (-22,6)
- D. (-24,6)

The graph of y = f(x) is shown on the left. Determine an equation of the function graphed 62. on the right.

A.
$$y = \frac{1}{2}f(x-1) - 5$$
 B. $y = \frac{1}{2}f(x-1) - 4$ C. $y = 2f(x-1) - 5$ D. $y = 2f(x-1) - 4$

B.
$$y = \frac{1}{2}f(x-1) - 4$$

C.
$$y = 2f(x - 1) - 5$$

D.
$$y = 2f(x - 1) - 4$$

The graph of y = f(x) is shown below. 63.

On the grids provided, sketch the graphs of:

A.
$$y = 2|f(x) - 1|$$

B.
$$y = \frac{1}{f(x)}$$

JAN 2008

- 64. If y = (x + 4)(x 2), determine the zeros of the function y = f(2x).
 - A. -8, 4
- B. −4, 2
- C. −2, 1
- D. -1, 2
- Which equation represents the graph of y = f(x) after it is expanded vertically by a factor
 - A. $y = \frac{1}{5}f(x)$ B. y = 5f(x) C. $y = f(\frac{x}{5})$ D. y = f(5x)

The graph of y = f(x) is shown: 66.

Which graph represents the graph of y = -f(x+3) + 1?

A.

B.

C.

D.

67. Determine the inverse of the function $f(x) = x^3 - 2$.

A.
$$f^{-1}(x) = \sqrt[3]{x+2}$$

B.
$$f^{-1}(x) = \sqrt{x} + 2$$

C.
$$f^{-1}(x) = \sqrt[3]{x} - 2$$

A.
$$f^{-1}(x) = \sqrt[3]{x+2}$$
 B. $f^{-1}(x) = \sqrt[3]{x}+2$ C. $f^{-1}(x) = \sqrt[3]{x}-2$ D. $f^{-1}(x) = \sqrt[3]{x}-2$

If the point (6, -12) is on the graph of y = f(x), which point must be on the graph of 68. $y=f\left(-\frac{1}{3}x+6\right)$?

A.
$$(-36, -12)$$
 B. $(-24, -12)$ C. $(0, -12)$ D. $(16, -12)$

B.
$$(-24, -12)$$

C.
$$(0.-12)$$

- The graph of y = f(x) is shown below on the left. Determine an equation of the function 69. graphed on the right.

A.
$$y = -\frac{1}{2}f(x)$$

B.
$$y = -\frac{1}{2}f(x) + 2$$

A.
$$y = -\frac{1}{2}f(x)$$
 B. $y = -\frac{1}{2}f(x) + 2$ C. $y = -\frac{1}{2}f(x) + 3$ D. $y = -\frac{1}{2}f(x) + 4$

D.
$$y = -\frac{1}{2}f(x) + 4$$

Given the graph of y = f(x) below, sketch g(x) = 3|f(x)| - 2. 70.

71. The graph of y = f(x) is shown:

On the grids provided, sketch the graphs of:

A.
$$y = -|f(x) + 2|$$

B.
$$y = \frac{1}{f(x)}$$

72. For the function $f(x) = \frac{1}{x+3}$: Determine the equation that defines the inverse function, $f^{-1}(x)$, and sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the grid provided.

2009 SAMPLE QUESTIONS

- 73. If the graph of 2x + 3y = 5 is translated 4 units up, determine an equation of the new graph.
 - A. 2x + 3y = 1
- B. 2x + 3y = 9 C. 2x + 3(y + 4) = 5 D. 2x + 3(y 4) = 5
- 74. If (a, b) is a point on the graph of y = f(x), determine a point on the graph of y = f(x-2) + 3.
- A. (a-2,b+3) B. (a-2,b-3) C. (a+2,b+3) D. (a+2,b-3)
- 75. If the point (2, -8) is on the graph of y = f(x 3) + 4, what point must be on the graph of y = f(x).
 - A. (-1, -12) B. (-1, -4) C. (5, -12) D. (5, -4)

- 76. How is the graph of $y = 7^{3x}$ related to the graph of $y = 7^{x}$?
 - A. the graph of $v = 7^x$ has been expanded vertically by a factor of 3
 - B. the graph of $y = 7^x$ has been compressed vertically by a factor of 3
 - C. the graph of $y = 7^x$ has been expanded horizontally by a factor of 3
 - D. the graph of $y = 7^x$ has been compressed horizontally by a factor of 3
- If the graph of $x^2 + y^2 = 4$ is vertically compressed by a factor of 5, then reflected in the y-axis, determine an equation for the new graph.

A.
$$x^2 + \frac{y^2}{25} = 4$$

B.
$$-x^2 + 25y^2 = 4$$

C.
$$x^2 + 25y^2 = 4$$

A.
$$x^2 + \frac{y^2}{25} = 4$$
 B. $-x^2 + 25y^2 = 4$ C. $x^2 + 25y^2 = 4$ D. $-x^2 + \frac{y^2}{25} = 4$

- The graph of y = -f(x) is a reflection of the graph of y = f(x) in 78.
 - A. the ν -axis.

- B. the x-axis. C. the line y = x. D. the line y = -x.
- 79. What is the inverse of the relation $y = x^3$?
 - A. $y = \frac{1}{y^3}$ B. $x = y^3$ C. $y = (-x)^3$ D. $x = y^{\frac{1}{3}}$

- The point (6, -12) is on the graph of the function y = f(x). Which point must be on the graph of the function y = 3f(-x)?
 - A. (-6, -36)
- B. (6.36)
- C. (-6, -4)
- D. (6,4)
- 81. If $f(x) = \frac{2x}{x-1}$, determine the equation of $f^{-1}(x)$, the inverse of f(x).

 - A. $f^{-1}(x) = \frac{x}{x-2}$ B. $f^{-1}(x) = \frac{2x}{2x-1}$ C. $f^{-1}(x) = \frac{x-1}{2x}$ D. $f^{-1}(x) = \frac{1}{x-2}$

For which graph of y = f(x) would f(-x) = -f(x)? 82.

В.

C.

D.

- When the graph of y = f(x) is transformed to the graph of y = f(-x), on which line(s) will the invariant points lie?
 - A. y = 0
- B. x = 0
- C. y = x
- D. v = 1, v = -1
- If the range of y = f(x) is $-1 \le y \le 2$, what is the range of $y = \frac{1}{f(x)}$?

 - A. $-1 \le y \le \frac{1}{2}$ B. $-1 \le y \le \frac{1}{2}$, y = 0 C. $y \ge \frac{1}{2}$ or $y \le -1$ D. $y \ge 2$ or $y \le -1$
- The range of y = f(x) is transformed to the graph of $y = \frac{1}{f(x)}$. If the following points are on the graph of y = f(x), which point would be invariant?
 - A. (1, 2)
- B. (2, 1)
- C. (3,0) D. (0,3)

86. If the range of y = f(x) is $-3 \le y \le 5$, what is the range of y = |f(x)|?

A.
$$-3 \le y \le 5$$
 B. $0 \le y \le 3$

B.
$$0 \le y \le 3$$

C.
$$0 \le y \le 5$$

C.
$$0 \le y \le 5$$
 D. $3 \le y \le 5$

Determine an equation that will cause the graph of y = f(x) to expand vertically by a factor of 4 and then translate 3 units up.

A.
$$y = \frac{1}{4}f(x) + 3$$
 B. $y = \frac{1}{4}f(x) - 3$ C. $y = 4f(x) + 3$ D. $y = 4f(x) - 3$

B.
$$y = \frac{1}{4}f(x) - 3$$

C.
$$y = 4f(x) + 3$$

D.
$$y = 4f(x) - 3$$

88. In the diagram below, y = f(x) is graphed as a broken line.

Which equation is defined by the solid line?

A.
$$y = 2f(x + 1)$$

B.
$$y = f(2x - 1)$$

C.
$$y = f(2x + 1)$$

C.
$$y = f(2x + 1)$$
 D. $y = 2f(x - 1)$

The graph of y = f(x) is shown below. Sketch the graph of $y = -f\left(\frac{1}{2}(x+2)\right)$. 89.

The graph of y = f(x) is shown below on the left. Which equation represents the graph shown 90. on the right?

A.
$$y = -2f(2x+3)$$

B.
$$y = -2f(2x+6)$$

A.
$$y = -2f(2x+3)$$
 B. $y = -2f(2x+6)$ C. $y = -2f(\frac{1}{2}x+3)$ D. $y = -2f(\frac{1}{2}x+6)$

D.
$$y = -2f(\frac{1}{2}x + 6)$$

91. If the point (6, -2) is on the graph y = f(x), which point must be on the graph of $y = \frac{1}{f(-x) + 4}$?

A.
$$\left(-10, -\frac{1}{2}\right)$$
 B. $\left(-6, \frac{1}{2}\right)$ C. $\left(-6, \frac{7}{2}\right)$ D. $\left(-\frac{1}{6}, 2\right)$

B.
$$\left(-6, \frac{1}{2}\right)$$

C.
$$\left(-6, \frac{7}{2}\right)$$

D.
$$\left(-\frac{1}{6}, 2\right)$$

The graph of y = f(x) is shown: 92.

Sketch the graphs of: A. y = 2|f(x)| + 1

B.

ADDITIONAL QUESTIONS

- If y = f(x) is a function with domain [-8, 12], determine the domain of $y = \frac{1}{2}f(x 3)$. 93.
 - A. [-5, 6]
- B. [-7, 12] C. [-5, 15]
- D. [-11, 9]
- The graph of y = -g(2x) is obtained by transforming the graph of y = g(x) in the following way:
 - A. Shrink horizontally and reflect across the *x* -axis.
 - B. Shrink horizontally and reflect across the *y* -axis.
 - C. Stretch vertically and reflect across the *x* -axis.
 - D. Stretch vertically and reflect across the *y* -axis.
- If (-4, 7) is a point on the graph of y = h(t), which of the following must be a point on the graph of y = h(-t) - 2?
 - A. (-4, -9) B. (-4, -5) C. (4, 5)
- D. (4, 9)
- 96. If f(x) = |x 2|, sketch the graph of $y = f\left(\frac{x}{2}\right)$

97. The relation $x = \sqrt{9 - y^2}$ is multiplied vertically by a factor of $\frac{1}{3}$, then translated 1 unit to the right. Determine the equation of the transformed relation.

A.
$$x = \sqrt{9 - 9y^2 + 1}$$

B.
$$x = \sqrt{9 - 9y^2} - 1$$

A.
$$x = \sqrt{9 - 9y^2 + 1}$$
 B. $x = \sqrt{9 - 9y^2 - 1}$ C. $x = \sqrt{9 - \frac{y^2}{9} + 1}$ D. $x = \sqrt{9 - \frac{y^2}{9} - 1}$

D.
$$x = \sqrt{9 - \frac{y^2}{9}} - \frac{y^2}{9}$$

The zeros of the function y = f(x) are -4, 1 and 2. Determine the zeros of the new function y = -f(x-1).

A.
$$-5, 0, 1$$

C.
$$-3, 2, 3$$

D.
$$-1$$
, 0, 5

99. Given the function $f(x) = \frac{3x}{x+1}$, determine the equation of the inverse function $f^{-1}(x)$.

100. The function y = f(x) is graphed to the left below. Determine an equation of the function shown on the right.

A.
$$y = f(2x)$$

B.
$$y = f(2x + 6)$$

B.
$$y = f(2x + 6)$$
 C. $y = f(2x - 6)$

D.
$$y = f(2x + 12)$$

101. The graph of y = f(x) is shown below.

On the grid provided, sketch the graphs of

A.
$$y = -f(x+3)$$

B.
$$y = 2|f(x)| - 3$$

102. If the graph of $x^2 + y^2 = 4$ is compressed vertically by a factor of 2, which of the following equations represents this transformation?

A.
$$4x^2 + y^2 = 4$$

B.
$$x^2 + 4y^2 = 4$$

A.
$$4x^2 + y^2 = 4$$
 B. $x^2 + 4y^2 = 4$ C. $x^2 + 2y^2 = 4$ D. $2x^2 + y^2 = 4$

D.
$$2x^2 + y^2 = 4$$

103. The point (-2,6) is on the graph of y = f(x). Which of the following points must be on the graph of $y = \frac{1}{3}f(2(x-1))$?

104. Which graph best represents the inverse relation of the graph shown?

105. Determine the inverse of f(x) = x - 2.

A.
$$f^{-1}(x) = x + 2$$

A.
$$f^{-1}(x) = x + 2$$
 B. $f^{-1}(x) = \frac{1}{x} - \frac{1}{2}$ C. $f^{-1}(x) = -\frac{x}{2}$ D. $f^{-1}(x) = \frac{1}{x - 2}$

C.
$$f^{-1}(x) = -\frac{x}{2}$$

D.
$$f^{-1}(x) = \frac{1}{x-2}$$

106. Determine $Q^{-1}(t)$ if $Q(t) = \frac{C}{4t-1}$, and C is a non-zero constant.

A.
$$Q^{-1} = \frac{C}{4}t + C$$

B.
$$Q^{-1} = \frac{4t-1}{C}$$

C.
$$Q^{-1} = \frac{C+t}{4t}$$
, $t = 0$

D.
$$Q^{-1} = \frac{C - 4t}{t}$$
, $t = 0$

107. Suppose g(4) = 30 means the volume of water in a container is 30 mL when the depth of the water is 4 cm. What is the meaning of $g^{-1}(50) = 10$?

- A. The volume of the water is 10 mL when the depth of the water is 50 cm.
- B. The depth of the water is 10 cm when the volume of the water is 50 mL.
- C. The depth of the water is 0.2 cm when the volume of the water is 50 mL.
- D. The volume of the water is 5 mL when the depth of the water is 10 cm.

108. The function y = f(x) has a domain of [-3, 15] and a range of [-5, 12]. Determine the range for each of the following:

a)
$$y = |f(x)|$$

b)
$$y = \sqrt{f(x)}$$

c)
$$y = f^{-1}(x)$$

$$d) y = \frac{1}{f(x)}$$

109. The graph of y = 2f(x - 1) is sketched below.

On the same grid, sketch a clearly labelled graph of y = f(x).

110. For which of the following functions is $f(x) = f^{-1}(x)$, where $f^{-1}(x)$ is the inverse function of f(x)?

$$A. \quad f(x) = x^2$$

A.
$$f(x) = x^2$$
 B. $f(x) = \frac{1}{x}$ C. $f(x) = |x|$ D. $f(x) = \log x$

$$C. \quad f(x) = |x|$$

D.
$$f(x) = \log x$$

111. The graph of y = f(x) is shown below.

On the grids provided, sketch the graphs of

A.
$$y = -f(x+1)$$

$$B. \ \ y = \frac{1}{f(x)}$$

C.
$$y = 2f(2x)$$

A.

B.

- 112. Given the functions f(x) = |x-2| + 3 and g(x) = |x+2| + 1, determine the correct set of translations that will transform y = f(x) into y = g(x).
 - A. 4 units left and 2 units down
- B. 4 units right and 2 units up

- C. 1 unit left and 3 units up
- D. 2 units left and 4 units down
- 113. The graph of the function y = f(x) is transformed to produce the graph of the function y = g(x) as shown. Determine an equation for y = g(x) in terms of y = f(x).
 - A. $g(x) = \frac{1}{2}f(3x)$ B. g(x) = 2f(3x)
 - C. $g(x) = \frac{1}{2}f\left(\frac{x}{3}\right)$ D. $g(x) = 2f\left(\frac{x}{3}\right)$

114. The graph of y = f(x) is transformed into the graph of g(x) + 4 = 2(f(x - 3)).

For y = f(x), the domain is [-1, 3] and the range is [2, 6].

For y = g(x), the domain is [a, b] and the range is [c, d].

For the graph of y = g(x), the values of a, b, c, and d are, respectively

- A. -4, 0, 0, 8 B. 2, 6, 0, 8 C. -4, 0, -4, 4 D. 2, 6, -4, 4
- 115. Consider the following transformations on the graph of y = f(x).
 - y = f(x+2)I.
 - II. y = 2f(x)
 - III. y = f(-x)
 - IV. y = -f(x)

Which transformations will have no effect on the zeros of the original graph of y = f(x)?

- A. I and II only

- B. II and III only C. II and IV only D. III and IV only

116. The graph of y = f(x) is shown below.

Determine the location of invariant points under each of the following transformations on y = f(x):

A.
$$y = -f(x)$$

B.
$$y = f(-x)$$

C.
$$x = f(y)$$

117. The ordered pairs below represent possible transformations of the point P(a, b) on the graph of the function y = f(x).

Point 3:
$$(a, -b)$$

Point 4:
$$\left(a, \frac{b}{4}\right)$$

Point 5:
$$\left(\frac{a}{4}, b\right)$$

Match each of the following single transformations with the correct ordered pairs of the corresponding point P on the new graph.

a)
$$y = -f(x)$$
 b) $y = f($

a)
$$y = -f(x)$$
 b) $y = f(\frac{1}{4}x)$ c) $y = \frac{1}{4}f(x)$ d) $y = f(-x)$

118. Given f(x) = -3x + 7, evaluate $y = f^{-1}(-2)$.

TRANSFORMATIONS ANSWER KEY

- D C 1 2
- 3 Α 4 В
- 5 D
- 6 Α С
- 7 8 В 9a)

9b)

9c)

9d)

- 10 B
- 11 C 12 B
- 13a)

13b)

- 14 Á 15 Α
- 16 Α Α
- 17 18 В
- 19a)

- 19b)
- 20 D 21 A
- 22a)
- 22b)
- 23 A 24 B 25 A
- 26 D 27 Α 28 Α
- 29 Α 30 В
- С 31 32 B 33a)

33b)

- 34 B
- 35 B 36a)

36b)

- 37 A 38 39 A C
- 40a)

- 40b)
- 41 A 42 D

43b)

99
$$f^{-1}(x) = \frac{x}{3-x}$$

100 D

101a)

102 B

103 A

104 D

105 A 106 C

107 B 108 a) $0 \le y \le 12$

b)
$$0 \le y \le \sqrt{12}$$

c) $-3 \le y \le 15$

c)
$$-3 \le y \le 15$$

d)
$$y \le -\frac{1}{5}$$
 or $y \ge \frac{1}{12}$

110 B

111b)

112 A

113 D

114 B 115 C

110 a) i b) g 117 a) 3 b) 1 118 3

c) e c) 4 d) 2