$$f(x) = x^2 - 3x$$

$$f'(x) = 2x - 3$$

$$f'(x) = 2x - 3$$

at x=1, slope of tangent line:

$$f'(1) = 2(1) - 3$$

= $-\frac{1}{1}$

... Slope of normal is 1

Equation of normal:

Point on normal (1, f(i)) = (1, -2)

$$f(1) = 1^2 - 3(1)$$

sub: -2=1+b

$$y=x-3$$
 Normal at $x=1$.

oc-intercept: y=0, sub:

$$x=3$$
, crosses at

Product Rule

If
$$F(x) = f(x) \cdot g(x)$$

Then $F'(x) = f(x) \cdot g'(x) + g(x) \cdot f'(x)$
 $y = u \cdot v$
 $\int_{0}^{\infty} \int_{0}^{\infty} f(x) \cdot g(x) + g(x) \cdot f'(x)$
 $\int_{0}^{\infty} \int_{0}^{\infty} f(x) \cdot g(x) + g(x) \cdot f'(x)$
 $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} f(x) \cdot g(x) \cdot g(x) + g(x) \cdot f'(x)$
 $\int_{0}^{\infty} \int_{0}^{\infty} \int$

$$= x^2 e^{2x-7} \left(2x+3\right)$$

check on calculator?

(walobitemu TI83+

$$\frac{d}{dx}x^2 = 2x$$

MATH

(
$$x^2$$
) x^3) $x = 6$.

 $f(x) = x^2$
 $f(x) = x^2$
 $f(x) = x^2$

$$\frac{d}{dx}$$
 x^2 x

$$2(3)=6$$
.

Quotient Rule.

If
$$F(x) = \frac{f(x)}{g(x)}$$

$$F'(x) = q(x) \cdot f'(x) - f(x) \cdot g'(x)$$

then
$$F'(x) = g(x) \cdot f'(x) - f(x) \cdot g'(x)$$

 $g(x)^{2}$

If $y = \frac{u}{v}$, $u = u(x)$, $v = v(x)$.

then $\frac{dy}{dx} = v\frac{du}{dx} - u\frac{dv}{dx}$
 $\int_{v}^{2} \frac{v(x)}{v(x)} = v\frac{dv}{dx}$
 $\int_{v}^{2} \frac{v(x)}{v(x)} = v\frac{dv}{dx}$

$$= -\frac{4x+12}{x^4}$$